Tubular Surface Having Pointwise 1-type Gauss Map in Euclidean 4-Space
نویسندگان
چکیده
منابع مشابه
To Specify Surfaces of Revolution with Pointwise 1-type Gauss Map in 3-dimensional Minkowski Space
In this paper, by the studying of the Gauss map, Laplacian operator, curvatures of surfaces in R 1 and Bour’s theorem, we are going to identify surfaces of revolution with pointwise 1-type Gauss map property in 3−dimensional Minkowski space. Introduction The classification of submanifolds in Euclidean and Non-Euclidean spaces is one of the interesting topics in differential geometry and in this...
متن کاملParallel Transport Frame in 4 -dimensional Euclidean Space
In this work, we give parallel transport frame of a curve and we introduce the relations between the frame and Frenet frame of the curve in 4-dimensional Euclidean space. The relation which is well known in Euclidean 3-space is generalized for the rst time in 4-dimensional Euclidean space. Then we obtain the condition for spherical curves using the parallel transport frame of them. The conditi...
متن کاملThe Gauss Map for Surfaces : Part 2 . the Euclidean Case
We study smooth maps t: M -> Ci of a Riemann surface M into the Grassmannian Gi of oriented 2-planes in E2 ' ' and determine necessary and sufficient conditons on t in order that it be the Gauss map of a conformai immersion X: M -» E2 + '. We sometimes view / as an oriented riemannian vector bundle; it is a subbundle of Ej/'. the trivial bundle over M with fibre E2 + l. The necessary and suffic...
متن کاملA note on surfaces with prescribed oriented Euclidean Gauss map
We present another proof of a theorem due to Hoffman and Osserman in Euclidean space concerning the determination of a conformal immersion by its Gauss map. Our approach depends on geometric quantities, that is, the hyperbolic Gauss map G and formulae obtained in hyperbolic space. We use the idea that the Euclidean Gauss map and the hyperbolic Gauss map with some compatibility relation determin...
متن کاملSlant Helices in Euclidean 4-space E
We consider a unit speed curve α in Euclidean four-dimensional space E and denote the Frenet frame by {T,N,B1,B2}. We say that α is a slant helix if its principal normal vector N makes a constant angle with a fixed direction U . In this work we give different characterizations of such curves in terms of their curvatures. MSC: 53C40, 53C50
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Electronic Journal of Geometry
سال: 2019
ISSN: 1307-5624
DOI: 10.36890/iejg.628083